Step of Proof: do-apply-p-lift
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
do-apply-p-lift
:
1.
A
: Type
2.
B
: Type
3.
P
:
A
4.
d
:
x
:
A
Dec(
P
(
x
))
5.
f
: {
x
:
A
|
P
(
x
)}
B
6.
x
:
A
(
isl(case
d
(
x
) of inl(
a
) => inl (
f
(
x
)) | inr(
a
) => inr
a
))
(outl(case
d
(
x
) of inl(
a
) => inl (
f
(
x
)) | inr(
a
) => inr
a
) =
f
(
x
))
latex
by ((((GenConclAtAddr [1;1;1;1])
CollapseTHENA (Auto
))
)
C
CollapseTHEN (((D (-2)
)
CCo
CollapseTHEN (((Reduce 0)
C
CollapseTHEN (Auto
))
))
))
latex
CC
.
Definitions
x
:
A
.
B
(
x
)
,
P
Q
,
left
+
right
,
inl
x
,
True
,
b
,
{
x
:
A
|
B
(
x
)}
,
outl(
x
)
,
P
Q
,
,
Dec(
P
)
,
x
(
s
)
,
f
(
a
)
,
inr
x
,
A
,
x
:
A
B
(
x
)
,
Type
,
False
,
t
T
,
s
=
t
Lemmas
decidable
wf
,
true
wf
,
false
wf
origin